Long-offset moveout for VTI using Padé approximation

نویسندگان

  • Hanjie Song
  • Yingjie Gao
  • Jinhai Zhang
  • Zhenxing Yao
چکیده

The approximation of normal moveout is essential for estimating the anisotropy parameters of the transversally isotropic media with vertical symmetry axis (VTI). We have approximated the long-offset moveout using the Padé approximation based on the higher order Taylor series coefficients for VTI media. For a given anellipticity parameter, we have the best accuracy when the numerator is one order higher than the denominator (i.e., [L∕ðL − 1Þ]); thus, we suggest using [4/3] and [7/6] orders for practical applications. A [7/6] Padé approximation can handle a much larger offset and stronger anellipticity parameter. We have further compared the relative traveltime errors between the Padé approximation and several approximations. Our method shows great superiority to most existing methods over a wide range of offset (normalized offset up to 2 or offset-todepth ratio up to 4) and anellipticity parameter (0–0.5). The Padé approximation provides us with an attractive highaccuracy scheme with an error that is negligible within its convergence domain. This is important for reducing the error accumulation especially for deeper substructures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Accurate Ray-Based Offset-To-Angle Transform from Normal Moveout Uncorrected Multicomponent Data in a Transversely Isotropic Medium with Vertical Symmetry Axis

A new ray-based approach for converting multicomponent normal moveout uncorrected offset domain prestack seismic data into angles is presented. From any two-way zero-offset time sample and a given angle of incidence, the exact ray and a few neighboring rays that contribute to the given angle of incidence are traced through the medium to their corresponding source and receiver locations to compu...

متن کامل

Interval anisotropic parameter estimation using velocity-independent layer stripping

Moveout analysis of long-spread P-wave data is widely used to estimate the key time-processing parameter η in layered VTI (transversely isotropic with a vertical symmetry axis) media. Inversion for interval η values, however, suffers from instability caused by the tradeoff between the effective moveout parameters and by the subsequent error amplification during Dix-type layer stripping. Here, w...

متن کامل

An optimal parameterization for full waveform inversion in anisotropic media

Full waveform inversion (FWI) in transversely isotropic media usually requires abundant a priori information, like well data and smoothness assumptions, to make the FWI converge to a plausible solution. The proper model parameterization in transversely isotropic (TI) media with a vertical symmetry axis (VTI) can alleviate some of these limitations. Considering the limitations of our field data ...

متن کامل

Velocity Modeling in a Vertical Transversely Isotropic Medium Using Zelt Method

In the present paper, the Zelt algorithm has been extended for ray tracing through an anisotropic model. In anisotropic media, the direction of the propagated energy generally differs from that of the plane-wave propagation. This makes velocity values to be varied in different directions. Therefore, velocity modeling in such media is completely different from that in an isotropic media. The vel...

متن کامل

An analytical approach to migration velocity analysis

Prestack depth migration provides a powerful tool for velocity analysis in complex media. Both prominent approaches to velocity analysis—depth-focusing analysis and residual-curvature analysis, rely on approximate formulas to update velocity. Generally, these formulas are derived under the assumptions of horizontal reflector, lateral velocity homogeneity, or small offset. Therefore, the convent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016